Nobel per la Medicina 2019 a Kaelin, Ratcliffe e Semenza
Nobel per la Medicina 2019 a Kaelin, Ratcliffe e Semenza

Per la scoperta di come le cellule sentono la disponibilità di ossigeno e vi si adattano 

Come la cellula avverte la disponibilità di ossigeno e come vi si adatta, utilizzando l'elemento vitale per eccellenza in modo da produrre l'energia che la alimenta. Svelano i meccanismi alla base del 'respiro della cellula', facendo luce su "uno dei processi adattativi più essenziali della vita", gli studi premiati con il Nobel per la Medicina 2019, vinto dagli americani William G. Kaelin Jr e Gregg L. Semenza e dall'inglese Sir Peter J. Ratcliffe.

I tre scienziati, recita la motivazione del riconoscimento assegnato dal Karolinska Institutet di Stoccolma, "hanno stabilito le basi per comprendere come i livelli di ossigeno influenzano il metabolismo cellulare e la funzione fisiologica". Le loro ricerche "hanno anche spianato la strada a nuove strategie promettenti per combattere l'anemia, il cancro e molte altre malattie".

Tutti gli animali, e anche l'uomo, hanno bisogno di ossigeno per trasformare il cibo in energia utile. Ma se "l'importanza fondamentale dell'ossigeno è nota da secoli, il modo in cui le cellule si adattano ai cambiamenti nei livelli di ossigeno è rimasto per molto tempo misterioso". Kaelin, Ratcliffe e Semenza lo hanno spiegato.

"Grazie al rivoluzionario lavoro di questi scienziati - spiegano dall'Assemblea dei Nobel al Karolinska Institutet svedese - sappiamo molto di più su come i livelli di ossigeno regolano processi fisiologici fondamentali". Il rilevamento delle concentrazioni del 'gas della vita' permette infatti alle nostre cellule di adattare il metabolismo ai differenti livelli di ossigeno, "per esempio nei muscoli durante l'esercizio fisico intenso". Ma non solo: le 'antenne dell'ossigeno' controllano anche altri processi di adattamento cruciali come "la generazione di nuovi vasi sanguigni e la produzione di globuli rossi", o ancora "il funzionamento del sistema immunitario". E' stato inoltre dimostrato che il rilevamento dell'ossigeno "è essenziale durante lo sviluppo fetale per guidare la normale formazione dei vasi sanguigni e della placenta".

Le 'centraline' deputate alla misurazione dei livelli di ossigeno sono importanti in salute, come pure in malattia: "I pazienti con insufficienza renale cronica, ad esempio, soffrono spesso di anemia grave a causa della ridotta espressione di eritropoietina", un ormone prodotto appunto dalle cellule del rene ed "essenziale per controllare la sintesi dei globuli rossi". La macchina cellulare regola-ossigeno ha infine un ruolo chiave nel cancro, che la 'dirotta' per i propri fini: "I tumori la sfruttano infatti per stimolare la formazione dei vasi sanguigni" che servono loro per nutrirsi e crescere, e la usano "per rimodellare il metabolismo delle cellule in modo da proliferare efficacemente" ed espandersi.

Grazie agli studi dei neo-Nobel, "sforzi intensi e continui vengono oggi messi in campo nei laboratori accademici e nelle aziende farmaceutiche per sviluppare farmaci in grado di interferire con diversi stati patologici, attivando o bloccando proprio i meccanismi di rilevamento dell'ossigeno".

Non è la prima volta che il rapporto fra cellule e ossigeno è oggetto di un Nobel. Prima d'oggi è accaduto altri due anni: nel 1931, quando il tedesco Otto Warburg svelò il processo enzimatico alla base della trasformazione del cibo in energia nei mitocontri, le 'centrali energetiche' cellulari; nel 1938, quando il premio andò al belga Corneille Jean François Heymans. Lo scienziato comprese come il corpo carotideo, un 'organo-recettore' localizzato nel collo, regola la frequenza respiratoria captando le concentrazioni di ossigeno nel sangue e dialogando direttamente con il cervello. Solo molti anni dopo entrarono in scena Semenza, Ratcliffe e Kaelin.

Semenza si concentrò sul gene Epo dell'eritropoietina, essendo noto che in caso di bassi livelli di ossigeno (ipossia) questo ormone renale 'ordina' un aumento della produzione di globuli rossi. Il ricercatore Usa spiegò attraverso quali sequenze di Dna il gene Epo viene 'acceso' in carenza di ossigeno; Ratcliffe approfondì la regolazione ossigeno-dipendente del gene Epo, mentre entrambi i team giunsero alla conclusione che questo meccanismo è presente in tutti i tessuti e non soltanto nel rene. Si trattava allora di identificare in modo preciso i componenti cellulari 'ponte' fra livelli di ossigeno e attività del gene Epo. Il primo fu trovato a metà anni '90 da Semenza, che lo chiamò Hif (fattore indotto dall'ipossia) e ne scoprì i geni codificanti e la struttura: era un complesso formato da due proteine di cui una - Hif-1 alfa - spiccava come determinante nella regolazione del gene Epo, e 'protetta' dalla degradazione in condizioni di ipossia.

Intanto che Semenza e Ratcliffe esploravano la regolazione del gene Epo, Kaelin studiava il cancro e indagava su una sindrome genetica ereditaria - la malattia di von Hippel-Lindau (Vhl) - che moltiplica il rischio di tumori. Lo scienziato osservò che il gene Vhl, mutato in questi pazienti, codifica per una proteina anticancro e che le cellule tumorali prive di Vhl sano esprimevano livelli altissimi di geni regolati dall'ipossia, i quali tornavano normali quando il gene Vhl veniva reintrodotto in versione funzionante. A sorpresa Vhl apparve così la possibile tessera mancante del puzzle. Ipotesi confermata da Ratcliffe, quando svelò che il gene Vhl interagisce fisicamente con Hif-1 alfa e le permette di essere degradata a concentrazioni normali di ossigeno. Il meccanismo complessivo, che coinvolge varie famiglie di enzimi, fu scandagliato nei dettagli finali in due articoli pubblicati simultaneamente nel 2001. Ma gli attori protagonisti del 'respiro della cellula' erano stati smascherati.

 


Torna alle notizie di medicina / medicina